Mechanisms of erythropoietin-mediated cardioprotection during ischemia-reperfusion injury: role of protein kinase C and phosphatidylinositol 3-kinase signaling.
نویسندگان
چکیده
Langendorff-perfused rat hearts treated with EPO exhibited significantly improved postischemic recovery of left ventricular developed pressure (LVDP) and reduced infarct size compared with control hearts. Perfusion with the mitogen/extracellular signal-regulated kinase (MEK) inhibitor U0126 just before and concomitant with EPO treatment abolished EPO-induced phosphorylation of the MEK substrate extracellular signal-regulated kinase (ERK) but had no effect of EPO-mediated cardioprotection. EPO treatment of the perfused hearts induced translocation of protein kinase C (PKC) epsilon isoform to the membrane fraction of the hearts and the protective effect of EPO was significantly inhibited by the PKC catalytic inhibitor chelerythrine added before and concomitant with EPO. These data demonstrate that EPO-mediated activation of the PKC signaling pathway before or during ischemia is required for the cardioprotective effect of EPO during ischemia-reperfusion injury. Perfusion with the phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 or wortmannin just before and concomitant with EPO treatment attenuated EPO-induced phosphorylation of the PI3K substrate Akt but had no effect on EPO-mediated cardioprotection. However, when wortmannin was added during EPO treatment and continued during reperfusion, EPO-mediated cardioprotection was significantly inhibited. We also show that postischemia EPO treatment at the onset of reperfusion significantly improved recovery of LVDP and reduced infarct size. Postischemia cardioprotection by EPO required the PI3K pathway but was not affected by inhibition of PKC at the time of EPO treatment.
منابع مشابه
Phosphatidylinositol-3-kinase signaling is required for erythropoietin-mediated acute protection against myocardial ischemia/reperfusion injury.
BACKGROUND Parenteral administration of recombinant human erythropoietin (rhEPO) to rats induces protection against myocardial ischemia/reperfusion injury 24 hours later. However, the mechanisms by which rhEPO mediates protection have not been determined. METHODS AND RESULTS rhEPO was perfused into isolated rat hearts over 15 minutes immediately before 30 minutes of no-flow ischemia and 45 mi...
متن کاملP3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory
Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...
متن کاملMorphine and remifentanil-induced cardioprotection: its experimental and clinical outcomes
During the past few decades, a large number of animal studies demonstrated that commonly used opioids could provide cardioprotection against ischemia-reperfusion (I/R) injury. Opioid-induced preconditioning or postconditioning mimics ischemic preconditioning (I-Pre) or ischemic postconditioning (I-Post). Both δ- and κ-opioid receptors (OPRs) play a crucial role in opioid-induced cardioprotectio...
متن کاملInvestigating the role of acute and repeated stress on remote ischemic preconditioning-induced cardioprotection
Objective(s): To study the effect of acute and repeated stress on cardioprotection-induced by remote ischemic preconditioning (RIPC).Materials and Methods: RIPC was induced by giving 4 short cycles of ischemia and reperfusion, each consisting of five min. The Langendorff’s apparatus was used to perfuse the isolated rat hearts by subjecti...
متن کاملMechanism(s) Involved in Carbon Monoxide-releasing Molecule-2-mediated Cardioprotection During Ischaemia-reperfusion Injury in Isolated Rat Heart
The purpose of the present study was to determine the mechanism(s) involved in carbon monoxide-releasing molecule-2, carbon monoxide-releasing molecule-2-induced cardioprotection. We used the transition metal carbonyl compound carbon monoxide-releasing molecule-2 that can act as carbon monoxide donor in cardiac ischaemia-reperfusion injury model using isolated rat heart preparation. Langendorff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 19 10 شماره
صفحات -
تاریخ انتشار 2005